# implementation of an undirected graph using Adjacency Matrix, with weighted or unweighted edges
class Vertex:
def __init__(self, n):
self.name = n
class Graph:
vertices = {}
edges = []
edge_indices = {}
def add_vertex(self, vertex):
if isinstance(vertex, Vertex) and vertex.name not in self.vertices:
self.vertices[vertex.name] = vertex
for row in self.edges:
row.append(0)
self.edges.append([0] * (len(self.edges)+1))
self.edge_indices[vertex.name] = len(self.edge_indices)
return True
else:
return False
def add_edge(self, u, v, weight=1):
if u in self.vertices and v in self.vertices:
self.edges[self.edge_indices[u]][self.edge_indices[v]] = weight
self.edges[self.edge_indices[v]][self.edge_indices[u]] = weight
return True
else:
return False
def print_graph(self):
for v, i in sorted(self.edge_indices.items()):
print(v + ' ', end='')
for j in range(len(self.edges)):
print(self.edges[i][j], end='')
print(' ')
g = Graph()
# print(str(len(g.vertices)))
a = Vertex('A')
g.add_vertex(a)
g.add_vertex(Vertex('B'))
for i in range(ord('A'), ord('K')):
g.add_vertex(Vertex(chr(i)))
edges = ['AB', 'AE', 'BF', 'CG', 'DE', 'DH', 'EH', 'FG', 'FI', 'FJ', 'GJ', 'HI']
for edge in edges:
g.add_edge(edge[:1], edge[1:])
g.print_graph()